Using Machine Learning Algorithms for Categorizing Quranic Chapters by Major Phases of Prophet Mohammad’s Messengership

نویسنده

  • Mohamadou Nassourou
چکیده

This paper discusses the categorization of Quranic chapters by major phases of Prophet Mohammad’s messengership using machine learning algorithms. First, the chapters were categorized by places of revelation using Support Vector Machine and naïve Bayesian classifiers separately, and their results were compared to each other, as well as to the existing traditional Islamic and western orientalists classifications. The chapters were categorized into Meccan (revealed in Mecca) and Medinan (revealed in Medina). After that, chapters of each category were clustered using a kind of fuzzy-single linkage clustering approach, in order to correspond to the major phases of Prophet Mohammad’s life. The major phases of the Prophet’s life were manually derived from the Quranic text, as well as from the secondary Islamic literature e.g hadiths, exegesis. Previous studies on computing the places of revelation of Quranic chapters relied heavily on features extracted from existing background knowledge of the chapters. For instance, it is known that Meccan chapters contain mostly verses about faith and related problems, while Medinan ones encompass verses dealing with social issues, battles...etc. These features are by themselves insufficient as a basis for assigning the chapters to their respective places of revelation. In fact, there are exceptions, since some chapters do contain both Meccan and Medinan features. In this study, features of each category were automatically created from very few chapters, whose places of revelation have been determined through identification of historical facts and events such as battles, migration to Medina...etc. Chapters having unanimously agreed places of revelation were used as the initial training set, while the remaining chapters formed the testing set. The classification process was made recursive by regularly augmenting the training set with correctly classified chapters, in order to classify the whole testing set. Each chapter was preprocessed by removing unimportant words, stemming, and representation with vector space model. The result of this study shows that, the two classifiers have produced useable results, with an outperformance of the support vector machine classifier. This study indicates that, the proposed methodology yields encouraging results for arranging Quranic chapters by phases of Prophet Mohammad’s messengership.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MQVC: Measuring Quranic Verses Similarity and Sura Classification Using N-Gram

Extensive research efforts in the area of Information Retrieval were concentrated on developing retrieval systems related to Arabic language for the different natural language and information retrieval methodologies. However, little effort was conducted in those areas for knowledge extraction from the Holly Muslim book, the Quran. In this paper, we present an approach (MQVC) for retrieving the ...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features

Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...

متن کامل

Body Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine

Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...

متن کامل

Machine learning algorithms for time series in financial markets

This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012